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Aims Using a large international database from multiple cohort studies, the aim is to create a generalizable easily used risk
score for mortality in patients with heart failure (HF).

Methods
and results

The MAGGIC meta-analysis includes individual data on 39 372 patients with HF, both reduced and preserved left-
ventricular ejection fraction (EF), from 30 cohort studies, six of which were clinical trials. 40.2% of patients died
during a median follow-up of 2.5 years. Using multivariable piecewise Poisson regression methods with stepwise vari-
able selection, a final model included 13 highly significant independent predictors of mortality in the following order
of predictive strength: age, lower EF, NYHA class, serum creatinine, diabetes, not prescribed beta-blocker, lower sys-
tolic BP, lower body mass, time since diagnosis, current smoker, chronic obstructive pulmonary disease, male gender,
and not prescribed ACE-inhibitor or angiotensin-receptor blockers. In preserved EF, age was more predictive and
systolic BP was less predictive of mortality than in reduced EF. Conversion into an easy-to-use integer risk score iden-
tified a very marked gradient in risk, with 3-year mortality rates of 10 and 70% in the bottom quintile and top decile of
risk, respectively.

Conclusion In patients with HF of both reduced and preserved EF, the influences of readily available predictors of mortality can
be quantified in an integer score accessible by an easy-to-use website www.heartfailurerisk.org. The score has the
potential for widespread implementation in a clinical setting.
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Introduction
Heart failure (HF) is a major cause of death, but prognosis in indi-
vidual patients is highly variable. Quantifying a patient’s survival
prospects based on their overall risk profile will help identify
those patients in need of more intensive monitoring and therapy,
and also help target appropriate populations for trials of new
therapies.

There exist previous risk models for patients with HF.1– 8

Each uses a single cohort of patients and hence their generaliz-
ability to other populations is questionable. Each model’s

development is from a limited cohort size, compromising the
ability to truly quantify the best risk prediction model. Also
most models are restricted to patients with reduced left-
ventricular ejection fraction (EF), thus excluding many HF
patients with preserved EF.

The Meta-analysis Global Group in Chronic Heart Failure
(MAGGIC) provides a comprehensive opportunity to develop a
prognostic model in HF patients, both with reduced and preserved
EF. We use readily available risk factors based on 39 372 patients
from 30 studies to provide a user-friendly score that readily quan-
tifies individual patient mortality risk.
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Methods
The MAGGIC program’s details are documented previously.9 Briefly,
we have individual patient data from 31 cohort studies (six randomized
clinical trials and 24 observational registries). Here one registry is
excluded since it had only median 3-month follow-up. The remainder
comprised 39 372 patients with a median follow-up of 2.5 years (inter-
quartile range 1.0–3.9 years), during which 15 851 patients (40.2%)
died. Thirty-one baseline variables were considered as potential pre-
dictors of mortality (Table 1).

The Coordinating Centre at the University of Auckland assembled
the database for 29 studies. The London School of Hygiene and Trop-
ical Medicine team the added in the CHARM trial data. The online Ap-
pendix lists the MAGGIC investigators (Supplementary material
online).

In 18 studies, a preference was for rounding the EF to the nearest
5%. In these studies, such rounded values were re-allocated within
2.5% either side using a uniform distribution.

Statistical methods
Poisson regression models were used to simultaneously relate baseline
variables to the time to death from any cause, with study fitted as a
random effect. Since mortality risk is higher early on, the underlying
Poisson rate was set in three time bands: up to 3 months, 3–6
months, and over 6 months. Models were built using forward stepwise
regression with inclusion criterion P , 0.01.

For binary and categorical variables, dummy variables were used.
Quantitative variables were fitted as continuous measurements,
unless there was a clear evidence of non-linearity, e.g. body mass
index, EF, and creatinine. Also two highly significant statistical interac-
tions were included in the main model: the impact of age and systolic
blood pressure both depend on EF.

Each variable’s strength of contribution to predicting mortality was
expressed as the z statistic. The larger the z the smaller the P-value,
e.g.: z values 3.29, 3.89, 5.32, and 6.11 are associated with P-values
0.001, 0.0001, 0.0000001, and 0.000000001, respectively.

Missing values are handled by multiple imputations using chained
equations.10,11 This method has three steps. First, for each variable
with missing values, a regression equation is created. This model
includes the outcome and follow-up time, in this case the Nelson–
Aalen estimator (as recommended by White and Royston10), an indi-
cator variable for each study and other model covariates. For continu-
ous variables, this is a multivariable linear regression, for binary
variables, a logistic regression, and for ordered categorical variables,
an ordinal logistic regression. Once all such regression equations are
defined, missing values are replaced by randomly chosen observed
values of each variable in the first iteration. For subsequent iterations,
missing values are replaced by a random draw from the distribution
defined by the regression equations. This was repeated for 10 itera-
tions, the final value being the chosen imputed value. This is similar
to Gibbs sampling.12

This entire process was repeated 25 times, thus creating 25 imputed
data sets. The next step was to estimate the model for each of these
data sets. Finally, the model coefficients are averaged according to
Rubin’s rule.13 This ensures that the estimated standard error of
each averaged coefficient reflects both between and within imputation
variances, giving valid inferences.

We converted the Poisson model predictor to an integer score, which
is then directly related to an individual’s probability of dying within 3
years. A zero score represents a patient at lowest possible risk. Having
grouped each variable into convenient intervals, the score increases by

an integer amount for each risk factor level above the lowest risk.
Each integer is a rounding of the exact coefficient in the Poisson
model, making log rate ratio 0.1 equivalent to 1 point.
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Table 1 Descriptive statistics for baseline variables

Alive
(n 5 23 521)

Died
(n 5 15 851)

Mean
or %

SD Mean
or %

SD

Age (years) 64.3 11.8 71.9 10.9

Male, % 69.0 65.1

Non-Caucasian, % 10.7 7.8

Body mass index (kg/m2) 27.5 5.1 26.0 5.0

Current smoker, % 34.2 29.0

Ejection fraction, % 36.6 14.0 33.6 14.0

Systolic blood pressure (mmHg) 131.0 21.8 130.5 25.6

Diastolic blood pressure
(mmHg)

77.7 12.1 75.5 13.5

Haemoglobin (g/L) 133.7 19.0 119.0 26.1

Heart failure duration ≥18
months, %

48.8 49.7

NYHA class, %

I 10.8 6.7

II 53.8 37.1

III 31.3 42.8

IV 4.1 13.4

Creatinine (mmol/L) 109.4 55.8 126.9 58.4

Sodium (mmol/L) 139.7 3.6 138.9 4.2

Medical history, %

Diabetes 20.6 25.7

Angina 40.3 38.6

MI 45.6 43.6

Atrial fibrillation 17.8 23.5

Stroke 6.2 12.2

COPD 5.7 17.0

Hypertension 41.3 39.3

Rales 22.3 41.7

Ischaemic heart disease 52.9 51.8

CABG 15.4 13.9

PCI 11.7 7.9

Branch bundle block 22.1 24.5

Oedema 21.4 31.9

Shortness of breath, %

Resting 15.9 35.8

Exercise 80.8 78.8

Medications, %

Beta-blocker 40.4 24.4

ACE-I 68.0 60.5

ARB 3.3 4.3

NYHA, New York Heart Association; COPD, chronic obstructive pulmonary
disease; ACE-I, angiotensin-converting enzyme inhibitor; ARB,
angiotensin-receptor blockers; PCI, percutaneous coronary intervention; CABG,
coronary artery bypass grafting.
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The data were analysed using Stata version 12.1 statistical package.

Results
This report is based on 39 372 patients from 30 studies: six were
randomized controlled trials (24 041 patients) and 24 were regis-
tries (15 331 patients). Supplementary material online Table S1
describes each of the 30 studies. Overall, 15 851 (40.2%) patients
died during a median follow-up of 2.5 years. The six largest studies
(DIAMOND,14 DIG,15 CHARM,16 and ECHOS17 trials and
IN-CHF18 and HOLA19 registries) contributed 75.8% of patients
and also 75.8% of deaths.

There were 31 baseline variables available for inclusion in
prognostic models. Table 1 provides their descriptive statistics
for patients still alive and patients who died during follow-up.

Using Poisson regression models for patient survival with
forward stepwise variable selection, adjusting for study (random
effect) and follow-up time (higher mortality rate in early follow-
up), we identified 13 independent predictor variables (Table 2).
All were highly significant P , 0.002, and most were overwhelm-
ingly significant, i.e. P , 0.0001.

Table 3 lists the extent of missing data for these 13 variables. A
multiple imputation algorithm (see Methods) was used to

overcome this problem. Consequently, all results are based on
average estimates across 25 imputed data sets.

For continuous variables, potential non-linearity in the predic-
tion of survival was explored, as were potential statistical interac-
tions between predictors. Hence the associations of EF, body mass
index, and serum creatinine with mortality risk were, respectively,
confined to EF ,40%, body mass index ,30 kg/m2, and serum
creatinine ,350 mmol/L. The mortality association of increased
age was more marked with higher EF, whereas the inverse associ-
ation of systolic blood pressure with mortality became more
marked with lower EF.

Figure 1 displays the independent impact of each predictor on
mortality risk. The impact of age (which varies with EF) is particu-
larly strong, and hence is shown on a different scale to the other
plots.

From the risk coefficients given in Table 2, an integer score has
been created (Figure 2). For each patient, the integer amounts con-
tributed by the risk factor’s values are added up to obtain a total
integer score for that patient. The bell-shaped distribution of this
integer risk score for all 39 372 patients is shown in Figure 3.
The median is 23 points and the range is 0–52 points, with 95%
of patients in the range of 8–36 points. The curve in Figure 3
relates a patient’s score to their probability of dying within 3
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Table 2 Multivariable model predicting mortality in all 39 372 patients

Variable Rate ratio 95% CI Log rate ratio Z P-value

Age (per 10 years) 1.154 (1.092, 1.220) 0.143 5.08 ,0.0001

Males 1.115 (1.073, 1.159) 0.109 5.58 ,0.0001

BMI (per 1 kg/m2 increase up to 30 kg/m2)a 0.965 (0.959, 0.972) 20.035 210.10 ,0.0001

Current smoker 1.159 (1.109, 1.210) 0.147 6.65 ,0.0001

SBP (per 10 mmHg increase) 0.882 (0.855, 0.910) 20.126 27.85 ,0.0001

Diabetes 1.422 (1.365, 1.481) 0.352 16.85 ,0.0001

NYHA

I 0.788 (0.732, 0.848) 20.239 26.35 ,0.0001

II 1.000

III 1.410 (1.354, 1.467) 0.343 16.75 ,0.0001

IV 1.684 (1.580, 1.796) 0.521 16.05 ,0.0001

Ejection fraction (per 5% increase up to 40%)a 0.581 (0.539, 0.627) 20.542 214.03 ,0.0001

COPD 1.228 (1.152, 1.310) 0.206 6.36 ,0.0001

HF duration .18 months 1.188 (1.139, 1.240) 0.173 7.96 ,0.0001

Creatinine (per 10 mmol/L up to 350 mmol/L) 1.039 (1.035, 1.042) 0.038 19.82 ,0.0001

Beta-blocker 0.760 (0.726, 0.796) 20.274 211.77 ,0.0001

ACE-I/ARB 0.908 (0.856, 0.963) 20.096 23.26 0.002

Interaction of ejection fraction and ageb 1.040 (1.031, 1.049) 0.039 9.05 ,0.0001

Interaction of ejection fraction and SBPc 1.012 (1.008, 1.017) 0.012 5.13 ,0.0001

BMI, body mass index; SBP, systolic blood pressure; NYHA, New York Heart Association; COPD, chronic obstructive pulmonary disease; HF, heart failure; ACE-I,
angiotensin-converting enzyme inhibitor; ARB, angiotensin-receptor blockers.
aThe BMI variable has a linear trend up to 30 kg/m2, while above 30 kg/m2 the risk is constant. Similarly, for ejection fraction, the risk is constant above 40%, and for creatinine risk is
constant above 350 mmol/L.
bThe interaction between ejection fraction and age indicates an extra 4% increase in mortality for each simultaneous 10-year increase in age and 5% increase in ejection fraction on
top of the risks of ejection fraction and age considered independently, i.e. the protective effect of increased ejection fraction function diminishes as a patient ages (Figure 1).
cThe interaction between ejection fraction and SBP indicates an extra 1.2% increase in mortality for each simultaneous 10 mmHg increase in SBP and 5% increase in ejection
fraction on top of the risks of ejection fraction and SBP considered independently, i.e. the protective effect of increased ejection fraction function diminishes as a patient’s SBP
increases (Figure 1).
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years. For instance, scores of 10, 20, 30, and 40 have 3-year prob-
abilities 0.101, 0.256, 0.525, and 0.842, respectively. Table 4 details
the link between any integer score and the probabilities of dying
within 1 year and 3 years.

Figure 4 shows mortality over 3 years for patients classified into
six risk groups. Groups 1–4 comprise patients with scores 0–16,
17–20, 21–24, and 25–28, respectively, approximately the first
four quintiles of risk. To give more detail at higher risk, groups 5
and 6 comprise patients with scores 29–32 and 33 or more, ap-
proximately the top two deciles of risk. The marked continuous
separation of the six Kaplan–Meier curves is striking: the 3-year
% dead in the bottom quintile and top decile is 10 and 70%,
respectively.

Regarding model goodness-of-fit, Figure 5 compares observed
and model-predicted 3-year mortality risk across the six risk
groups. In the bottom two groups, the observed mortality is slight-
ly lower than that predicted by the model, but overall the marked
gradient in risk is well captured by the integer score.

Tables 5 and 6 show two separate models for patients with
reduced and preserved left-ventricular function (EF ,40 and
≥40%, respectively). For most predictors, the strength of mortality
association is similar in both subgroups. However, the impact of
age is more marked and the impact of lower SBP is less marked
in patients with preserved left-ventricular function, consistent
with the interactions in the overall model.

In this meta-analysis of 30 cohort studies, we explored between-
study heterogeneity in mortality prediction. From fitting separate
models for each study, we observe a good consistency across
studies re the relative importance of the predictors (data not
shown). We have also repeated the model in Table 2, now fitting
study as a fixed effect (rather than a random effect). This reveals
substantial between-study differences in mortality risk not
explained by predictors in our model. However, a comparison of

the seven randomized trials with the 23 patient registries reveals
no significant difference in their mortality rates.

Discussion
This study identifies 13 independent predictors of mortality in HF.
Although all have been previously identified, the model and risk
score reported here are the most comprehensive and generaliz-
able available in the literature. They are based on 39 372 patients
from 30 studies with a median follow-up of 2.5 years, the largest
available database of HF patients. Also, we include patients with
both reduced and preserved EF, the latter being absent from
most previous models of HF prognosis.

Given the wide variety of different studies included, with a global
representation, the findings are inherently generalizable to a broad
spectrum of current and future patients. Conversion of the risk
model into a user-friendly integer score accessible by the
website www.heartfailurerisk.org facilitates its use on a routine in-
dividual patient basis by busy clinicians and nurses.

All 13 predictors in the risk score should be routinely available,
though provision will be made in the website for one or two vari-
ables to be unknown for an individual. Note, the ‘top five’ predic-
tors age, EF, serum creatinine, New York Heart Association
(NYHA) class, and diabetes are important to know. The inverse as-
sociation of EF with mortality is well established, and as previously
reported,9 in above 40% there appears no further trend in progno-
sis. We included serum creatinine rather than creatinine clearance
or eGFR. The latter involve formulae that include age, which would
artificially diminish the huge influence of age on prognosis.

We confirm the association of body mass index with mortality,20

but with a cut-off of 30 kg/m2, above which there appears no
further trend. While others report heart rate as a significant pre-
dictor of mortality,21 we find that once the strong influence of
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Table 3 Extent of missing data

Model variable Studies with no data Studies with some data Total patients missing data

Studies Missing patients Studies Missing patients

Age 0 0 0 0 0

Gender 0 0 0 0 0

BMI 17 14 515 13 2686 17 201

Current smoker 6 9166 24 448 9614

SBP 9 12 016 21 276 12 292

Diabetes 1 348 29 341 689

NYHA class 5 2503 25 1128 3631

Ejection fraction 6 3279 24 3558 6837

COPD 10 16 788 20 253 17 041

HF duration 20 11 679 10 1066 12 745

Creatinine 5 2800 25 17 245 20 045

Beta-blocker 3 7890 27 709 8599

ACE-I/ARB 1 97 29 649 746

BMI, body mass index; SBP, systolic blood pressure; NYHA, New York Heart Association; COPD, chronic obstructive pulmonary disease; HF, heart failure; ACE-I,
angiotensin-converting enzyme inhibitor; ARB, angiotensin-receptor blockers.
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beta blocker use is included, heart rate was not a strong independ-
ent predictor. A modest association of ACE-inhibitor and/or angio-
tensin-receptor blockers (ARB) use with lower mortality was
highly significant, though many of our cohorts were established
before ARBs were routinely available.

Cardiovascular disease history (e.g. myocardial infarction,
angina, stroke, atrial fibrillation, LBBB) was considered in our
model development. What mattered most was the time since

first diagnosis of HF, best captured by whether this exceeds
18 months. Besides the powerful influence of diabetes, the other
disease indicator of a poorer prognosis was prevalence of COPD.
Previous myocardial infarction, atrial fibrillation, and LBBB were
not sufficiently strong independent predictors of risk to be included
in our model.

For patients with reduced and preserved EF, we developed sep-
arate risk models (Tables 5 and 6). Nearly all predictors display a

Figure 1 Mortality rate ratios (and 95% CIs) for each variable in the predictive model. All charts are on the same scale except that for the
interaction between ejection fraction and age, where the impact on mortality is more marked.
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similar influence on mortality in both subgroups. Two exceptions
are age (better prognosis of preserved EF compared with
reduced EF HF is more pronounced at younger ages) and systolic
blood pressure, which have a stronger inverse association with
mortality in patients with reduced EF. These two interactions are
incorporated into the integer risk score, as displayed in Figure 1.

Our meta-analysis of 30 cohort studies enables exploration of
between-study differences in mortality risk. Separately, for each
of the 10 largest studies, we calculated Poisson regression
models for the same 13 predictors. Informal inspection of
models across studies shows a consistent pattern to be
expected, given there are no surprises among the selected
predictors.

An additional model, with study included as a fixed effect (rather
than a random effect), reveals some between-study variation in
mortality risk not captured by the predictor variables. This may
be due to geographic variations or unidentified patient-selection
criteria varying across registries and clinical trials, though overall
patients in registries and trials appear at similar risk. Also, calendar

Figure 2 A chart to calculate the integer risk score for each patient.

Figure 3 Distribution of the integer risk score for all 39 372
patients, and its association with the risk of dying (and 95% CI)
within 3 years.
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Table 4 Predicted probabilities of death for each integer risk score

Integer risk score 1-year probability
of death

3-year probability
of death

Integer
risk score

1-year probability
of death

3-year probability
of death

0 0.015 0.039 26 0.175 0.397

1 0.016 0.043 27 0.191 0.427

2 0.018 0.048 28 0.209 0.458

3 0.020 0.052 29 0.227 0.490

4 0.022 0.058 30 0.248 0.523

5 0.024 0.063 31 0.269 0.556

6 0.027 0.070 32 0.292 0.590

7 0.029 0.077 33 0.316 0.625

8 0.032 0.084 34 0.342 0.658

9 0.036 0.092 35 0.369 0.692

10 0.039 0.102 36 0.398 0.725

11 0.043 0.111 37 0.427 0.756

12 0.048 0.122 38 0.458 0.787

13 0.052 0.134 39 0.490 0.815

14 0.058 0.146 40 0.523 0.842

15 0.063 0.160 41 0.557 0.866

16 0.070 0.175 42 0.591 0.889

17 0.077 0.191 43 0.625 0.908

18 0.084 0.209 44 0.659 0.926

19 0.093 0.227 45 0.692 0.941

20 0.102 0.247 46 0.725 0.953

21 0.111 0.269 47 0.757 0.964

22 0.122 0.292 48 0.787 0.973

23 0.134 0.316 49 0.816 0.980

24 0.147 0.342 50 0.842 0.985

25 0.160 0.369

Figure 4 Cumulative mortality risk over 3 years for patients
classified into six risk groups. Risk groups 1–4 represent the
first four quintiles of risk (integer scores 0–16, 17–20, 21–24,
and 25–28, respectively). Risk groups 5 and 6 represent the
top two deciles of risk (integer scores 29–32 and 33 or more,
respectively). 95% CIs are plotted at 1, 2, and 3 years follow-up.

Figure 5 Observed vs. model-predicted 3-year mortality in six
risk groups.
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year may be relevant since improved treatment of HF may enhance
prognosis in more recent times. We will explore these issues in a
subsequent publication.

The integer risk score gives a very powerful discrimination of
patients’ mortality risk over 3 years, and also has excellent

goodness-of-fit to the data across all 30 studies combined
(Figures 3 and 4). Specifically, the score facilitates the identification
of low-risk patients, e.g. score ,17 has an expected 90% 3-year
survival, and very high-risk patients, e.g. score ≥33 has an expected
30% 3-year survival.
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Table 6 Main effects model for EF ≥40 (17 930 patients of whom 6951 died)

Variable Rate ratio 95% CI Z P-value

Age (per 10 years) 1.589 (1.536, 1.643) 27.14 ,0.001

Male 1.113 (1.053, 1.177) 3.77 ,0.001

BMI (per 1 kg/m2 increase up to 30 kg/m2) 0.960 (0.951, 0.969) 28.50 ,0.001

Current smoker 1.174 (1.095, 1.258) 4.54 ,0.001

SBP (per 10 mmHg) 0.982 (0.968, 0.998) 22.30 0.024

Diabetes 1.401 (1.311, 1.498) 9.90 ,0.001

NYHA class

I 0.756 (0.682, 0.838) 25.32 ,0.001

II 1.000

III 1.458 (1.361, 1.561) 10.83 ,0.001

IV 1.756 (1.599, 1.928) 11.82 ,0.001

COPD 1.284 (1.181, 1.396) 5.91 ,0.001

HF duration .18 months 1.166 (1.088, 1.250) 4.37 ,0.001

Creatinine (per 10 mmol/L up to 350 mmol/L) 1.035 (1.029, 1.041) 11.39 ,0.001

Beta-blocker 0.798 (0.746, 0.855) 26.47 ,0.001

ARB/ACE-I 0.938 (0.842, 1.044) 21.21 0.233

BMI, body mass index; SBP, systolic blood pressure; NYHA, New York Hear Association; COPD, chronic obstructive pulmonary disease; HF, heart failure; ACE-I,
angiotensin-converting enzyme inhibitor; ARB, angiotensin-receptor blockers.
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Table 5 Main effects model for EF <40 (21 442 patients of whom 8900 died)

Variable Rate ratio 95% CI Z P-value

Age (per 10 years) 1.407 (1.375, 1.439) 29.54 ,0.001

Male 1.101 (1.044, 1.161) 3.57 ,0.001

BMI (per 1 kg/m2 increase up to 30 kg/m2) 0.970 (0.961, 0.978) 27.32 ,0.001

Current smoker 1.154 (1.091, 1.222) 4.99 ,0.001

SBP (per 10 mmHg increase) 0.936 (0.924, 0.948) 210.06 ,0.001

Diabetes 1.421 (1.347, 1.499) 13.00 ,0.001

NYHA classs

I 0.828 (0.744, 0.922) 23.44 0.001

II 1.000

III 1.372 (1.303, 1.445) 12.03 ,0.001

IV 1.640 (1.503, 1.790) 11.21 ,0.001

Ejection fraction (per 5% increase) 0.915 (0.902, 0.928) 212.34 ,0.001

COPD 1.191 (1.096, 1.295) 4.17 ,0.001

HF duration .18 months 1.191 (1.127, 1.259) 6.22 ,0.001

Creatinine (per 10 mmol/L up to 350 mmol/L) 1.041 (1.035, 1.046) 15.65 ,0.001

Beta-blocker 0.736 (0.694, 0.781) 210.21 ,0.001

ACE-I/ARB 0.834 (0.770, 0.905) 24.47 ,0.001

BMI, body mass index; SBP, systolic blood pressure; NYHA, New York Heart Association; COPD, chronic obstructive pulmonary disease; HF, heart failure; ACE-I,
angiotensin-converting enzyme inhibitor; ARB, angiotensin-receptor blockers.
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We recognize some limitations. In combining evidence across
multiple studies, we inevitably encountered substantial missing
data (Table 3), with a few variables (e.g. body mass index, HF dur-
ation) missing in some entire cohorts. To overcome this problem,
we used sophisticated computer-intensive multiple imputation
methods. In addition, we have checked the robustness of our
overall findings for each predictor by separate analyses within
each cohort where full data for that predictor were available.

Conventional good practice seeks to validate a new risk score
on external data. That is important when a risk score arises
from a single cohort in one particular setting, especially when
that cohort has limited size. Here, the circumstances are different.
We have a global meta-analysis of 30 cohorts with the largest
numbers of patients and deaths ever investigated in HF. We
found an internal consistency across studies in risk predictors,
but inevitably found between-cohort differences in mortality risk
not attributable to known risk factors, probably due to geographic
variations and differing patient-selection criteria. Thus, no single
external cohort can provide a sensible, generalizable validation of
our risk model. We feel that internal validation found across
studies is sufficient.

There exist several other risk scores for predicting survival in
HF.1–8 Best known is the Seattle Heart Failure Model.1 It was devel-
oped from a small database, 1125 patients in the PRAISE clinical
trial,22 confined to patients with severe HF: NYHA class III B or IV
and EF ≤30%. Such patients account for ,20% of patients in our
meta-analysis. Thus the robustness, applicability, and generalizability
of the Seattle model are somewhat limited. Some variables in the
Seattle model, e.g. serum sodium and haemoglobin, were not
found to be independent predictors for inclusion in our model.
Also, the Seattle model does not include diabetes, body mass
index, and serum creatinine, well established risk factors in HF. A re-
cently developed predictive model for survival is from the 3C-HF
Study,2 but its relatively small size and only 1 year follow-up is limiting.

Any new risk score’s success depends on the patient variables
available for inclusion. Current knowledge of biomarkers in HF is
inevitably ahead of what data are available across multiple cohort
studies. For instance, natriuretic peptide level markedly influences
prognosis in HF,8,23 but could not be included in our model. In
principle, its inclusion would enhance further the excellent prog-
nostic discrimination we achieved with routinely collected long-
established predictors. The risk score is most applicable for
patients at a stable point in their disease, the short-term impact
of acute HF events being a separate matter.

In conclusion, the risk score developed here on a huge database
of 30 cohort studies provides a uniquely robust and generalizable
tool to quantify individual patients’ prognosis in HF. The simplified
integer score, accessible by the website www.heartfailurerisk.org
makes findings routinely usable by busy clinicians. Such immediate
awareness of a patient’s risk profile is of value in determining the
most appropriate management and treatment of their HF.

Supplementary material
Supplementary material is available at European Heart Journal
online.
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Visualizing pericardial inflammation as the cause of acute chest pain
in a patient with a congenital pericardial cyst: the incremental
diagnostic value of cardiac magnetic resonance
Jawad Mazhar1, Claire Lawley1, Anthony J. Gill2, Stuart M. Grieve3,4, and Gemma A. Figtree1,4*
1Department of Cardiology, Royal North Shore Hospital, Sydney, Australia; 2Department of Pathology, Royal North Shore Hospital, Sydney, Australia;
3Department of Radiology, Royal Prince Alfred Hospital, Sydney, Australia; and 4North Shore Heart Research Group, Kolling Institute, University of Sydney,
St Leonards 2065 Sydney, NSW, Australia

* Corresponding author. Tel: +61 2 9926 8687, Fax: +61 2 9926 6521, Email: gfigtree@med.usyd.edu.au

A 29-year-old female presented with chest pain
radiating to the back and worse on inspiration.
An ECG was unremarkable. D-Dimer was
0.54 mg/mL (,0.5 mg/mL). Chest X-ray showed
an abnormal left heart border (Panel A). CT
pulmonary angiogram found no evidence of
pulmonary embolism, but showed a 7.5 ×
5.4 × 3.6 cm cyst, continuous with the pericar-
dium (Panel B). An echocardiogram showed an
echo-lucent mass adjacent to the left ventricle
(Panel C). As the cause of chest pain in a cyst
likely to have been present since birth was
unclear, a cardiac MRI (CMR) was performed.
This showed both the wall of the cyst, and the
pericardium to have increased T2 signal intensity
(Panel D), as well as early (Panel E) and delayed
gadolinium enhancement (Panel F) suggesting
pericarditis extending to involve the pericardial
cyst. As a result of persisting, severe pain, the
cyst was resected thoracoscopically. Histological
examination confirmed that the pericardial cyst
was actively inflamed: the wall was thickened
due to a combination of fibrosis (white arrows)
and fat necrosis (black arrows, Panel G). The
inner cyst was lined by mesothelial cells
showing reactive atypia (black arrows, Panel H) and contained an acute inflammatory exudate (white arrow), which was rich in macro-
phages and neutrophils (Panel I).

Congenital pericardial cysts are rare with an incidence of �1 in 100 000. Most are asymptomatic, and are found incidentally. This
case demonstrates the unique ability of CMR to visualize inflammation, assisting in the diagnosis of pericarditis as a cause of chest pain
in a previously asymptomatic pericardial cyst.

Published on behalf of the European Society of Cardiology. All rights reserved. & The Author 2013. For permissions please email: journals.permissions@oup.com
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